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Abstract—The convex feasibility problem consists of find-
ing a point in the intersection of closed convex sets. We
propose a new type of algorithm to solve it in which
randomly selected blocks of subgradient projectors are
activated in parallel at each iteration and averaged through
an extrapolation process. A key novelty is that the update
is obtained by a random super relaxation step which allows
for unbounded relaxation parameters, in sharp contrast with
existing methods where they are deterministic and bounded
by 2. Almost sure convergence is proved without requiring
any regularity assumptions. Additionally, we establish mean-
square convergence rates under linear regularity conditions.
Numerical applications to signal and image recovery are
demonstrated, which illustrate the benefits of super relax-
ations and random set activation.

Index Terms—Convex feasibility, signal recovery, subgra-
dient projection, stochastic algorithm.

I. INTRODUCTION

The convex feasibility problem is a powerful formalism
which captures problems in various areas of signal and

image processing, as well as in inverse problems [5], [8].
While our results remain valid for problems with infinitely

many sets in general Hilbert spaces [11, Section 5], we

focus for simplicity on the following formulation in the
Euclidean space R

N.

Problem 1 For every k ∈ {1, . . . , p}, fk : R
N → R is a

convex function and Ck =
{

x ∈ R
N | fk(x) 6 0

}

. It is

assumed that Z =
⋂

16k6p Ck 6= ∅. The task is to

find x ∈ R
N such that x ∈ Z. (1)

There exists a vast amount of deterministic frameworks

dedicated to solve Problem 1 by using exact projections
and subgradient projections, see, e.g., [1], [3], [6], [7],

[9], [10], [20]. Among them, those that employ extrap-

olated averages of blocks of (subgradient) projections
have shown better results and more flexibility in practice

[3], [7], [9]. In recent years, interest has grown towards
selecting the sets activated at each iteration in a random
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rather than deterministic fashion, e.g., [4], [13], [16],

[17], [21]. However, none of those results has established
the almost-sure convergence of the sequence of iterates to

a solution to Problem 1 when using stochastic extrapola-
tion algorithms.

The main contribution of the present paper is to intro-
duce a stochastic extension of the extrapolated method of

parallel subgradient projections of [9] with the following

original features:

• At each iteration it activates only a block of randomly

selected sets in (Ck)16k6p, which are combined via a
randomly weighted extrapolated average.

• It introduces for the first time the concept of random
super relaxation, whereby the relaxation parameter

can be greater than 2.

• It guarantees almost-sure convergence and conver-
gence in mean of the sequence of iterates to a solu-

tion to Problem 1 without any additional assumptions

on the sets (Ck)16k6p, the functions (fk)16k6p, or their
subgradients.

• Under linear regularity of the subgradient projectors,
it provides linear mean-square convergence.

The algorithm is presented in Section II-C and applied to
signal and image restoration problems in Section III.

II. STOCHASTIC EXTRAPOLATED METHOD OF PARALLEL

SUBGRADIENT PROJECTIONS

A. Notation

The scalar product and associated norm in R
N are

denoted by 〈· | ·〉 and ‖·‖ respectively. Let C be a nonempty

closed convex subset of R
N. Then projC denotes the

projection operator onto C and dC denotes its distance

function. Let f : RN → R be a convex function. The

subdifferential of f at x ∈ R
N is the set

∂f(x) =
{

u ∈ R
N | (∀z ∈ R

N) 〈z− x | u〉+ f(x) 6 f(z)
}

.
(2)

We refer to [2] for background on convex analysis and

optimization. The underlying probability space is (Ω,F,P)
and B denotes the Borel σ-algebra of R

N. An R
N-valued



random variable is a measurable mapping x : (Ω,F) →
(RN,B). The σ-algebra generated by a family Φ of random
variables is denoted by σ(Φ). The independence of a

random variable x : Ω → R
N with respect to σ(Φ) is

denoted by x ⊥⊥ σ(Φ). Given A ⊂ R
N, we set [x ∈

A] =
{

ω ∈ Ω | x(ω) ∈ A
}

. We use sans-serif letters

for deterministic variables and italicized serif letters for
random variables.

B. Subgradient projectors

Consider the setting of Problem 1. For every k ∈
{1, . . . , p}, let sk : R

N → R
N : x 7→ sk(x) ∈ ∂fk(x) be a

selection of ∂fk and let

Gk : R
N → R

N : x 7→







x− fk(x)

‖sk(x)‖2
sk(x), if fk(x) > 0;

x, if fk(x) 6 0

be the subgradient projector onto Ck associated with
(fk, sk) [2, Definition 29.40].

Subgradient projectors extend the classical projection

operators in the following sense. Let C be a nonempty
closed and convex subset of R

N and suppose that fk =
dC. Then Ck = C and Gk = projC [2, Example 29.44].

Their importance in solving Problem 1 stems from the fact
that subgradient projectors are generally much easier to

implement than exact ones.

C. Algorithm and convergence

We propose the following stochastic extension of the

extrapolated parallel block-iterative subgradient projec-
tion algorithms of [9], [10]. It features three levels of

stochasticity at each iteration n:

• The block of sets to be activated is randomly selected.

• The subgradient projections are averaged with ran-
dom weights (βi,n)16i6M.

• The relaxation parameter λn is random and not con-
fined to the interval ]0, 2[ as in traditional methods.

This super relaxation scheme will be shown to result

in a speed-up of convergence.

Algorithm 2 Consider the setting of Problem 1. Let x0 ∈
L2(Ω,F,P;RN), M ∈ N r {0}, δ ∈ ]0, 1/M[, and ρ ∈
[2,+∞[. Iterate

for n = 0, 1, . . .














































for i = 1, . . . ,M
⌊

ki,n ∼ uniform({1, . . . , p}) and ki,n ⊥⊥ σ(x0, . . . , xn)
pi,n = Gki,n

xn

(βi,n)16i6M in L1(Ω,F,P; [δ, 1]) with
∑M

i=1
βi,n = 1

pn =
∑M

i=1
βi,npi,n

Ln =











∑M

i=1
βi,n‖pi,n − xn‖2
‖pn − xn‖2

, if pn 6= xn;

1, otherwise

an = xn + Ln(pn − xn)
λn ∈ L1(Ω,F,P; ]0, ρ]) and λn ⊥⊥ σ(x0, . . . , xn, pn)
xn+1 = xn + λn(an − xn).

In the foregoing algorithm, M is the batch size, i.e.,

the number of activated sets, pn is the standard average
of the selected subgradient projections, Ln > 1 is the

extrapolation parameter, an is the extrapolated average,
and λn is the relaxation parameter, which can exceed the

standard bound 2 imposed by deterministic methods.
The following convergence result is based on the

stochastic framework of [11, Section 5] and it ensures

almost sure convergence of the sequence constructed by
Algorithm 2 to a solution to Problem 1 without additional

assumptions on the sets (Ck)16k6p.

Theorem 3 Let (xn)n∈N be the sequence constructed by

Algorithm 2 and suppose that

(∃µ ∈ ]0, 1[) inf
n∈N

E
(

λn(2− λn)
)

> µ. (3)

Then there exists x ∈ L2(Ω,F,P;Z) such that (xn)n∈N

converges to x in L1(Ω,F,P;RN) and P-a.s.

Under additional assumptions, we obtain the following

convergence rate.

Theorem 4 Let (xn)n∈N be the sequence constructed by

Algorithm 2. Suppose that that (3) holds, together with one

of the following:

(i) There exists χ ∈ ]0, 1[ such that, for every n ∈ N,

E
(

d2Z(xn+1)
∣

∣σ(x0, . . . , xn)
)

6 χd2Z(xn) P-a.s. (4)

(ii) Linear regularity for (Gk)16k6p holds, i.e., there exists

ν ∈ [1/p,+∞[ such that

(∀x ∈ R
N) d2Z(x) 6 ν

p
∑

k=1

‖Gkx− x‖2, (5)

in which case we set χ = 1−µδ(1−√
1− µ)2/(ρ2νp).

Then there exists x ∈ L2(Ω,F,P;Z) such that (xn)n∈N

converges to x in L2(Ω,F,P;RN) and P-a.s. Further,

(∀n ∈ N) E‖xn − x‖2 6 4χnEd2Z(x0). (6)

D. Literature comparison

Only a few works have established the almost sure

convergence to a solution of Problem 1 by using stochastic
projections methods and they do so in specialized settings:

• In [17], a particular case of Algorithm 2 is proposed
where M = 1 (only one set is activated at each

iteration), λn ≡ 1, and exact projectors are used.

Almost sure convergence to a solution is shown. This
result is also found in [4] and in [13]; the latter also

shows convergence in L2(Ω,F,P;RN). When the sets

(Ck)16k6p are half-spaces or when the interior of Z

is nonempty, [17] provides a rate for convergence in

L2(Ω,F,P;RN).
• A particular case of Algorithm 2 is analyzed in [18].

It provides almost sure convergence by using sub-

gradient projectors for M = 1 and deterministic pa-
rameters (λn)n∈N in ]0, 2[. Moreover, linear regularity



assumptions of the form of (5) are required, as well

as the assumption that the subgradients of (fk)16k6p

are uniformly bounded on R
N.

The above references provide almost sure convergence of

the sequence of iterates only for M = 1 and, therefore,

no parallel activation nor extrapolation is applied. In
this regard, one of the novelties of Theorem 3 is that it

guarantees almost sure convergence for M > 1 and with
extrapolation. We now comment on related works, though

they have not established almost sure convergence

• In [16] and [14] an algorithm similar to Algorithm 2

is studied with the following restrictions: determinis-

tic relaxations (λn)n∈N in ]0, 2[, iteration-independent
fixed deterministic weights βi,n ≡ 1/M, and exact

projections instead of subgradient projections. Mean-
square rates of convergence are established under ad-

ditional linear regularity assumptions, as well as er-

godic convergence results. Almost sure convergence
is not proved.

• Similarly, [15] and [19] use a deterministic

relaxation sequence (λn)n∈N in ]0, 2[, iteration-
independent fixed deterministic weights βi,n ≡ 1/M,

and they require linear regularity assumptions and
uniform boundedness of the subgradients of (fk)16k6p

on R
N. They state ergodic convergence and provide

rates of convergence in mean-square. Nevertheless,
they do not establish almost sure convergence of the

sequence of iterates.

These references have in common the addition of linear

regularity assumptions, deterministic relaxation parame-
ters (λn)n∈N and weights (βi,n)n∈N,16i6M, and the fact that

they do not guarantee almost sure convergence of the

iterates. Thus, even if Theorem 4 were to assume linear
regularity, it would still be novel since it guarantees al-

most sure convergence and provides rates of convergence

in mean-square. We also underline that we do not require
uniformly boundedness of the subgradients.

E. Random super relaxation parameters

In both Theorems 3 and 4, random relaxations satis-
fying (3) are used. When (λn)n∈N is deterministic, (3)

reduces to

(∃ ε ∈ ]0, 1[)(∀n ∈ N) λn ∈ [ε, 2− ε] , (7)

which corresponds to the standard range found in the

literature. Even in this case, the results in Theorems 3 and

4 are novel. However, a notable innovation introduced
in Algorithm 2 is the use of random super relaxation

sequences (λn)n∈N satisfying (3). There are various ways

to construct super relaxation parameters; here are a few
examples.

Example 5 Fix n ∈ N and µ ∈ ]0, 1[. Let ζ ∈ ]0, 1[, α ∈
]0,+∞[, and β ∈ ]0,+∞[. We assume that P([λn = α]) = ζ

and P([λn = β]) = 1− ζ. Then λn satisfies (3) if

ζ
(

α(2− α)
)

+ (1− ζ)
(

β(2 − β)
)

> µ. (8)

This strategy allows us to use a large number α ∈ ]0,+∞[
as long as the associated probability ζ is small. In partic-
ular, (8) holds for µ = 0.1, ζ = 1/7, α = 2.5, and β = 1.8.

In such a case, λn is a super relaxation parameter with
Eλn = 1.9. Another selection for µ = 0.01 is to set ζ = 0.5,

α = 2.3, and β = 1.5, which again gives Eλn = 1.9.

Example 6 Fix n ∈ N and µ ∈ ]0, 1[. Let α ∈ ]0,+∞[ and

β ∈ ]0,+∞[ be such that α < β, and we assume that
λn ∼ uniform([α,β]). Then λn satisfies (3) if

3α+ 3β− (α2 + αβ+ β2) > 3µ. (9)

This condition holds in particular when µ = 0.1, α = 1.5,

and β = 2.3. This produces a super relaxation parameter

λn with Eλn = 1.9.

III. NUMERICAL EXPERIMENTS

A. Signal restoration

The goal is to recover the original signal x ∈ R
N

(N = 1024) shown in Fig. 1(a) from 20 noisy observations

(rk)16k620 given by

(∀k ∈ {1, . . . , 20}) rk = Lkx+ wk (10)

where Lk : R
N → R

N is a known linear operator, ηk ∈
]0,+∞[, and wk ∈ [−ηk, ηk]

N
is a bounded random noise

vector. The parameters (ηk)16k620 ∈ ]0,+∞[
20

are known.

The operators (Lk)16k620 are Gaussian convolution filter
with zero mean and standard deviation taken uniformly in

[10, 30], ηk = 0.1, and wk is taken uniformly in [−ηk, ηk]
N

.
Set, for every k ∈ {1, . . . , 20} and every j ∈ {1, . . . ,N},

Ck,j =
{

x ∈ R
N | −ηn 6 〈Lkx− rk | ej〉 6 ηn

}

. (11)

Since the intersection of these sets is nonempty and their
projectors are computable explicitly [2, Example 29.21],

we solve the feasibility problem

find x ∈ R
N such that

(∀k ∈ {1, . . . , 20})(∀j ∈ {1, . . . ,N}) x ∈ Ck,j (12)

by Algorithm 2 implemented with exact projectors. We

run two instances with x0 = 0. In the first one, M = 1
and we compare four relaxation schemes: λn ≡ 1, which
leads the almost sure convergence result of [17] (see also

[13]), λn ≡ 1.9, the random super relaxation strategy of

Example 5 where, for every n ∈ N, P([λn = 2.3]) = 1/2
and P([λn = 1.5]) = 1/2, and strategy of Example 6

where, for every n ∈ N, λn ∼ uniform([1.5, 2.3]). Note that
both random super relaxations schemes satisfy Eλn ≡ 1.9.

In the second instance M = 128 and we compare the four

relaxation strategies as above. Fig. 2 displays the normal-
ized error versus execution time for a typical realization.
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Fig. 1: Experiment of Section III-A. (a): Original signal

x. (b): Noisy observation r1. (c): Solution produced by

Algorithm 2.

B. Image restoration

The goal is to recover the original image x̄ ∈ R
N×N

(N = 256) shown in Fig. 3(a) from three observations

{r1, r2, r3} which are given by the degradation of x̄ via
a Gaussian kernel with a standard deviation of 6 and

the addition of random noise. The noise distribution is

uniform([0, 5]N×N). Let L be the block-Toeplitz matrix
associated with the convolutional blur. Then

(∀k ∈ {1, 2, 3}) rk = Lx̄+ wk,

where wk ∼ uniform([0, 5]N×N). (13)

The random variables (wk)16k63 are i.i.d. Therefore,
as shown in [12], for every k ∈ {1, 2, 3}, with a 95%
confidence coefficient

x̄ ∈ Ck =
{

x ∈ R
N×N | ‖rk − Lx‖2 6 ξ

}

, (14)

where ξ = N2E|u|2 + 1.96N

√

E|u|4 − E2|u|2 with u ∼
uniform([0, 5]). For every k ∈ {1, 2, 3}, we compute the
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Fig. 2: Experiment of Section III-A. Normalized error
20 log(‖xn − x∞‖/‖x0 − x∞‖) (dB) versus execution time

(s) on a single core machine. Green: λn ≡ 1. Magenta:
λn ≡ 1.9. Blue: P([λn = 1.5]) = 1/2 and P([λn = 2.3]) =
1/2. Brown: λn ∼ uniform([1.5, 2.3]). (a): M = 1. (b):

M = 128.

subgradient projector onto Ck via the function fk : x 7→
‖rk − Lx‖2−ξ. In addition, the boundedness on pixel val-

ues is incorporated as the property set C4 = [0, 255]N×N.

Finally, it is assumed that the discrete Fourier transform
F(x̄) of x̄ is known on a portion of its support for low

frequencies in both directions. That is, let S be the set of

frequency pairs {0, . . . ,N/8−1}2 as well as those resulting
from the symmetry properties of the 2D discrete Fourier

transform of real images. The associated set is C5 =
{

x ∈ R
N×N | F(x)1S = F(x̄)1S

}

and its projection is given

by projC5
: x 7→ F−1(F(x̄)1S+F(x)1∁S). We run Algorithm 2

with x0 = 0 and M = 2. We compare four relaxation
strategies: λn ≡ 1, λn ≡ 1.9, the random super relaxation

strategy where, for every n ∈ N, P([λn = 2.5]) = 1/7 and

P([λn = 1.8]) = 6/7, and the random super relaxation
where, for every n ∈ N, λn ∼ uniform([1.5, 2.3]). Fig. 4

displays the normalized error versus execution time for a
typical realization.

First, these experiments show the advantage of using

random blocks, as reflected in the execution time of the
algorithm, even on a single-core machine. This perfor-

mance can naturally be further improved if Algorithm 2

is implemented on a multi-core architecture where, at
each iteration, each subgradient projector is assigned
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Fig. 3: Experiment of Section III-B. (a) Original image

x̄. (b) Noisy observation r1. (c) Solution produced by

Algorithm 2.
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Fig. 4: Experiment of Section III-B using M = 2. Nor-

malized error 20 log(‖xn − x∞‖/‖x0 − x∞‖) (dB) versus

execution time (s) on a single core machine. Green:
λn ≡ 1. Magenta: λn ≡ 1.9. Blue: P([λn = 1.8]) = 6/7
and P([λn = 2.5]) = 1/7. Brown: λn ∼ uniform([1.5, 2.3]).

to a dedicated core and all the cores work in parallel.
The numerical results also show the benefits of using

relaxation parameters bigger than 1 with extrapolation.

This behavior has been already observed for determin-
istic methods, see, e.g., [3], [7], [9], [20]. Finally, our

experimental results suggest that the use of the proposed

random super relaxation scheme further improves the
speed of convergence.

IV. CONCLUSION

We have introduced a stochastic block-iterative extrap-
olated parallel subgradient projections method for solving

the convex feasibility problem. Unlike the state of the

art, the proposed method guarantees the almost sure
convergence of the sequence of iterates to a solution

when more than one set is activated at each iteration
without assuming regularity conditions on the sets or uni-

formly boundedness on the subdifferentials. Additionally,

it introduces random super relaxation parameters which
may exceed 2. This feature was shown to be numerically

advantageous.
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[16] I. Necoara, P. Richtárik, and A. Patrascu, Randomized projection
methods for convex feasibility: Conditioning and convergence
rates, SIAM J. Optim., vol. 29, pp. 2814–2852, 2019.
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